
MENENTUKAN BILANGAN KROMATIK LOKASI PADA GRAF BERLAPIS Cn,2n,2n
Author(s) -
Putri Wahyu Aisyah,
Narwen Narwen,
Zulakmal Zulakmal
Publication year - 2019
Publication title -
jurnal matematika unand/jurnal matematika unand
Language(s) - Slovenian
Resource type - Journals
eISSN - 2721-9410
pISSN - 2303-291X
DOI - 10.25077/jmu.7.3.136-143.2018
Subject(s) - physics
Bilangan kromatik lokasi adalah bilangan terkecil k sehingga G mempunyai pewarnaan-k lokasi. Kelas warna pada G dinotasikan dengan Ci, merupakan himpunan titik-titik yang berwarna i dan 1 ≤ i ≤ k. Misalkan Π = {C1, C2, · · · , Ck} merupakan partisi terurut dari V (G) berdasarkan suatu pewarnaan titik, maka representasi v terhadap Π disebut kode warna dari v dinotasikan dengan cΠ(v). Kode warna cΠ(v) dari suatu titik v ∈ V (G) didefinisikan sebagai vektor-k: cΠ(v) = (d(v, C1), d(v, C2), · · · , d(v, Sk)) dimana d(v, Ci) = min{d(v, x)|x ∈ Ci} untuk 1 ≤ i ≤ k. Jika setiap titik yang berbeda di G memiliki kode warna yang berbeda untuk suatu Π, maka c disebut pewarnaan lokasi dari G.Kata Kunci: Bilangan Kromatik Lokasi, Kode Warna, Graf Berlapis