
PENENTUAN BILANGAN KROMATIK LOKASI UNTUK GRAF BERLIAN Brn UNTUK n = 3 DAN n = 4
Author(s) -
Mutiara Ramadhani Syafnur,
Lyra Yulianti,
Des Welyyanti
Publication year - 2018
Publication title -
jurnal matematika unand/jurnal matematika unand
Language(s) - Slovenian
Resource type - Journals
eISSN - 2721-9410
pISSN - 2303-291X
DOI - 10.25077/jmu.7.2.105-111.2018
Subject(s) - physics
Abstrak. Misalkan graf G = (V;E) adalah graf terhubung. Kelas warna pada G dino-tasikan dengan Si, merupakan himpunan titik-titik yang berwarna i dengan 1 i k.Misalkan = fS1; S2; ; Skg merupakan partisi terurut dari V (G). Berdasarkan suatupewarnaan titik, maka representasi v terhadap disebut kode warna dari v, dinotasikandengan c(v). Kode warna c(v) dari suatu titik v 2 V (G) didenisikan sebagai k-vektor,c(v) = (d(v; S1); d(v; S2); ; d(v; Sk));dimana d(v; Si) = minfd(v; x)jx 2 Sig untuk 1 i k. Jika setiap titik yang berbeda diG memiliki kode warna yang berbeda untuk suatu , maka c disebut pewarnaan lokasidari G. Minimum dari banyaknya warna yang digunakan pada pewarnaan lokasi dari grafG disebut bilangan kromatik lokasi, dinotasikan L(G). Pada tulisan ini akan dibahasbilangan kromatik lokasi dari graf berlian Brn untuk n = 3 dan n = 4.Kata Kunci: Kelas Warna, Kode Warna, Bilangan Kromatik Lokasi, Graf Berlian