
PENENTUAN BILANGAN KROMATIK LOKASI GRAF THORN DARI GRAF RODA W 3
Author(s) -
Elva Rahimah,
Lyra Yulianti,
Des Welyyanti
Publication year - 2018
Publication title -
jurnal matematika unand/jurnal matematika unand
Language(s) - Slovenian
Resource type - Journals
eISSN - 2721-9410
pISSN - 2303-291X
DOI - 10.25077/jmu.7.1.1-8.2018
Subject(s) - physics
Abstrak. Misalkan G = (V; E) graf terhubung. Bilangan kromatik dari graf G adalahbilangan asli terkecil k sedemikian sehingga G mempunyai suatu pewarnaan-k titik sejati.Bilangan kromatik dari G dinotasikan dengan (G). Misalkan (G) = k, ini berarti titiktitikdi G paling kurang diwarnai dengan k warna dan tidak dapat diwarnai dengan k1warna, sementara jika titik-titik di G diwarnai dengan k warna maka tidak ada titik yangbertetangga mempunyai warna yang sama.Kelas warna pada G dinotasikan dengan S, merupakan himpunan titik-titik yangberwarna i dengan 1 i k. Misalkan = fSi1; S2; ; Sg merupakan partisi terurutdari V (G). Berdasarkan suatu pewarnaan titik, maka representasi v terhadap disebutkode warna dari v, dinotasikan dengan c(v). Kode warna ck(v) dari suatu titik v 2V (G) didenisikan sebagai k-vektorc(v) = (d(v; S1); d(v; S2); ; d(v; S));dimana d(v; Si) = minfd(v; x)jx 2 Sikg untuk 1 i k. Jika setiap titik yang berbedadi G memiliki kode warna yang berbeda untuk suatu , maka c disebut pewarnaanlokasi dari G. Minimum dari banyaknya warna yang digunakan pada pewarnaan lokasidari graf G disebut bilangan kromatik lokasi. Pada tulisan ini akan dibahas bilangankromatik lokasi graf thorn dari graf roda W3.Kata Kunci: Kelas warna, kode warna, bilangan kromatik lokasi, graf thorn, graf roda