z-logo
open-access-imgOpen Access
THE FIRST U-EXTENSION MODULE AS CLASSES OF SHORT U-EXACT SEQUENCES
Author(s) -
Yudi Mahatma
Publication year - 2021
Publication title -
jurnal matematika unand
Language(s) - English
Resource type - Journals
eISSN - 2721-9410
pISSN - 2303-291X
DOI - 10.25077/jmu.10.4.553-560.2021
Subject(s) - extension (predicate logic) , exact sequence , sequence (biology) , mathematics , resolution (logic) , construct (python library) , equivalence (formal languages) , set (abstract data type) , equivalence relation , projective test , discrete mathematics , pure mathematics , algebra over a field , computer science , programming language , biology , genetics
Inspired by the notions of the U-exact sequence introduced by Davvaz and Parnian-Garamaleky in 1999, and of the chain U-complex introduced by Davvaz and Shabani-Solt in 2002, Mahatma and Muchtadi-Alamsyah in 2017 developed the concept of the U-projective resolution and the U-extension module, which are the generalizations of the concept of the projective resolution and the concept of extension module, respectively. It is already known that every element of a first extension module can be identified as a short exact sequence. To the simple, there is a relation between the first extension module and the short exact sequence. It is proper to expect the relation to be provided in the U-version. In this paper, we aim to construct a one-one correspondence between the first U-extension module and the set consisting of equivalence classes of short U-exact sequence.Keywords: Chain U-complex, U-projective resolution, U-extension module

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom