z-logo
open-access-imgOpen Access
Toxic Gases on β12 Borophene: the Selective Adsorption
Author(s) -
Ta Thi Luong,
Pham Trong Lam,
Van An Dinh
Publication year - 2020
Publication title -
tạp chí khoa học đại học quốc gia hà nội: toán - lý (vnu journal of science: mathematics - physics)
Language(s) - English
Resource type - Journals
eISSN - 2615-9341
pISSN - 2588-1124
DOI - 10.25073/2588-1124/vnumap.4463
Subject(s) - borophene , van der waals force , adsorption , molecule , density functional theory , chemical physics , materials science , computational chemistry , nanotechnology , chemistry , organic chemistry
Borophene, a new member of the 2D material family, was proven theoretically and empirically in many recent studies that it has a unique structure and promising properties applied in batteries and electronic devices. In this work, the adsorbability of β12 – borophene towards some main poisonous gases was investigated. Herein, first-principle calculations were employed to obtain the adsorption configurations, adsorption energy of CO, NO, CO2, NH3, and NO2 on b12 – borophene by using three van der Waals correlation functionals: revPBE-vdW, optPBE-vdW, and vdW-DF2. Also, the most stable configurations and diffusion possibilities of the gas molecules on the surface of b12 – borophene were determined visually by using Computational DFT-based Nanoscope. The nature of bonding and interaction between gas molecules and b12 – borophene were disclosed by using the density of states analysis and Bader charge analysis. Remarkably, borophene exhibits as a highly selective adsorbent when having great interactions with NOx gases outweigh the others.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here