z-logo
open-access-imgOpen Access
PFDINN: Comparison between Three Back-propagation Algorithms for Pear Fruit Disease Identification
Author(s) -
Samar Amil Qassir
Publication year - 2021
Publication title -
iraqi journal of science
Language(s) - English
Resource type - Journals
eISSN - 2312-1637
pISSN - 0067-2904
DOI - 10.24996/ijs.2021.62.9.28
Subject(s) - pear , artificial neural network , identification (biology) , artificial intelligence , algorithm , backpropagation , conjugate gradient method , machine learning , computer science , mathematics , horticulture , biology , botany
     The diseases presence in various species of fruits are the crucial parameter of economic composition and degradation of the cultivation industry around the world. The proposed pear fruit disease identification neural network (PFDINN) frame-work to identify three types of pear diseases was presented in this work. The major phases of the presented frame-work were as the following: (1) the infected area in the pear fruit was detected by using the algorithm of K-means clustering. (2) hybrid statistical features were computed over the segmented pear image and combined to form one descriptor. (3) Feed forward neural network (FFNN), which depends on three learning algorithms of back propagation (BP) training, namely Scaled conjugate gradient (SCG-BP), Resilient (R-BP) and Bayesian regularization (BR-BP), was used in the identification process. Pear fruit was taken as the experiment case during this work with three classifications of diseases, namely fire blight, pear scab, and sooty blotch, as compared to healthy pears. PFDINN framework was trained and tested using 2D pear fruit images collected from the Fruit Crops Diseases Database (FCDD). The presented framework achieved 94.6%, 97.3%, and 96.3% efficiency for SCG-BP, R-BP, and BR-BP, respectively. An accuracy value of 100% was achieved when the R-BP learning algorithm was trained for identification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here