z-logo
open-access-imgOpen Access
Green Synthesis of Copper Nanoparticles Using Tea Leaves Extract to Remove Ciprofloxacin (CIP) from Aqueous Media
Author(s) -
Mohammed A. Atiya,
Ahmed K. Hassan,
Fatimah Q. Kadhim
Publication year - 2021
Publication title -
iraqi journal of science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.152
H-Index - 4
eISSN - 2312-1637
pISSN - 0067-2904
DOI - 10.24996/ijs.2021.62.9.1
Subject(s) - adsorption , freundlich equation , aqueous solution , nuclear chemistry , fourier transform infrared spectroscopy , copper , mesoporous material , nanoparticle , chemistry , zeta potential , scanning electron microscope , langmuir , analytical chemistry (journal) , materials science , chemical engineering , chromatography , nanotechnology , organic chemistry , catalysis , composite material , engineering
     In the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM),  blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depends on initial pH (2.5-10), CIP (2mg/L-15mg / L) dose, temperature (20 ° C-50 ° C); time (0-180 min) and Cu-NP dose (0.1g /L-1g /L). Spherical nanoparticles with an average size of 47nm and a surface area of 1.6562m2/g were synthesized. The batch experiment showed that 92% of CIP 0.01 mg/L were removed at a maximum adsorbent dose of 0.75 g/L, pH 4, 180 min, and an initial 1:1 rate (w / w) of CIP: Cu-NPs. Kinetic adsorption models and ciprofloxacin removal mechanisms were examined. The kinetic analysis showed that adsorption is a physical adsorption system with activation energy of 0.8409 kJ.mol-1. A pseudo-first-order model is preferred for the kinetic removal after the physically diffusing process due to the low activation energy of 13.221kJ.mol-1. On the other hand, Langmuir, Freundlich, Temkin, and Dubinin isotherm models were also studied; the equilibrium data were best fitted with Langmuir and Dubinin isotherm models with maximum adsorption capacity of 5.5279, and 1.1069 mg/g, respectively. The thermodynamic values of ∆G0 were -0.0166, -0.0691, -4.1084, and -0.7014 kJ/mol at 20, 30, 40, and 50 ° C, respectively. The values of ΔH0 and ΔS0 were 18.8603 kJ/mol and 0.0652kJ/mol.k, respectively. These values showed spontaneous and endothermic sorption. The presence of the CIP concentration in aqueous media was identified by UV-analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here