
Modified Vegetation Detection Index Using Different-Spectral Signature
Author(s) -
Reem Sh. Hameed,
Loay E. Georg,
Baqer H. Sayyid
Publication year - 2021
Publication title -
iraqi journal of science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.152
H-Index - 4
eISSN - 2312-1637
pISSN - 0067-2904
DOI - 10.24996/ijs.2021.62.11.38
Subject(s) - normalized difference vegetation index , enhanced vegetation index , vegetation index , remote sensing , vegetation (pathology) , shortwave , environmental science , channel (broadcasting) , shortwave radiation , spectral signature , leaf area index , radiation , geology , radiative transfer , physics , ecology , biology , medicine , engineering , pathology , quantum mechanics , electrical engineering
The Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared radiation (SWIR) divided by their sums. The radiances or reflectances are included in this index from the Near-IR channel and WSIR2 channel (2.1 μm). The NDVSI is less sensitivite to atmospheric effects as compared to NDVI. By comparing the one NDVSI index with the two indexes (NDVI, SAVI) of vegetation cover, good correlations were found between NDVI and NDVSI (R2=0.917) and between SAVI and NDVSI (R2=0.809. Accordingly, the proposed index can be taken into consideration as an independent vegetation index