
Temporal Video Segmentation Using Optical Flow Estimation
Author(s) -
Eman Hato
Publication year - 2021
Publication title -
iraqi journal of science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.152
H-Index - 4
eISSN - 2312-1637
pISSN - 0067-2904
DOI - 10.24996/ijs.2021.62.11.36
Subject(s) - computer science , artificial intelligence , shot (pellet) , segmentation , computer vision , optical flow , boundary (topology) , process (computing) , projection (relational algebra) , feature (linguistics) , pattern recognition (psychology) , acceleration , motion detection , motion (physics) , mathematics , image (mathematics) , algorithm , physics , mathematical analysis , linguistics , chemistry , philosophy , organic chemistry , classical mechanics , operating system
Shot boundary detection is the process of segmenting a video into basic units known as shots by discovering transition frames between shots. Researches have been conducted to accurately detect the shot boundaries. However, the acceleration of the shot detection process with higher accuracy needs improvement. A new method was introduced in this paper to find out the boundaries of abrupt shots in the video with high accuracy and lower computational cost. The proposed method consists of two stages. First, projection features were used to distinguish non boundary transitions and candidate transitions that may contain abrupt boundary. Only candidate transitions were conserved for next stage. Thus, the speed of shot detection was improved by reducing the detection scope. In the second stage, the candidate segments were refined using motion feature derived from the optical flow to remove non boundary frames. The results manifest that the proposed method achieved excellent detection accuracy (0.98 according to F-Score) and effectively speeded up detection process. In addition, the comparative analysis results confirmed the superior performance of the proposed method versus other methods.