z-logo
open-access-imgOpen Access
Re-Evaluation Solution Methods for Kepler's Equation of an Elliptical Orbit
Author(s) -
Rasha H. Ibrahim,
Abdul-Rahman H. Saleh
Publication year - 2019
Publication title -
iraqi journal of science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.152
H-Index - 4
eISSN - 2312-1637
pISSN - 0067-2904
DOI - 10.24996/ijs.2019.60.10.21
Subject(s) - elliptic orbit , orbit (dynamics) , orbital eccentricity , orbit determination , eccentricity (behavior) , newton's method , mathematics , physics , mathematical analysis , satellite , classical mechanics , planet , astronomy , aerospace engineering , nonlinear system , quantum mechanics , political science , law , engineering
An evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term  that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to be (En=M), this initial value gave a good result for (E) for these methods regardless the value of e to increasing the accuracy of E. After that the orbital elements converting into state vectors within one orbital period within time 50 second, the results demonstrated that all these four methods can be used in semi-circular orbit, but in case of elliptical orbit Danby’s and Halley’s method use only for e ≤ 0.7, Mikkola’s method for e ≤ 0.01 while Newton-Raphson uses for e < 1, which considers more applicable than others to use in semi-circular and elliptical orbit. The results gave a good agreement as compared with the state vectors of Cartosat-2B satellite that available on Two Line Element (TLE).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here