
Numerical simulation of acoustic signal propagation in underwater acoustic duct
Author(s) -
F. F. Legusha,
Yu B Popov
Publication year - 2021
Publication title -
trudy krylovskogo gosudarstvennogo naučnogo centra
Language(s) - English
Resource type - Journals
eISSN - 2618-8244
pISSN - 2542-2324
DOI - 10.24937/2542-2324-2021-2-396-122-133
Subject(s) - acoustics , underwater , vertical plane , range (aeronautics) , underwater acoustics , duct (anatomy) , signal (programming language) , horizontal plane , plane wave , computer simulation , plane (geometry) , computer science , geology , physics , optics , geometry , engineering , simulation , geodesy , mathematics , telecommunications , aerospace engineering , medicine , oceanography , pathology , programming language
Object and purpose of research. The progress in numerical simulation methods significantly widens the capabilities of theoretical analysis in the tasks requiring extensive calculations and input data sets, like sound propagation at sea. This paper discusses the feasibility of a numerical model describing the physics of acoustic signal propagation in a deep-water channel. Materials and methods. Acoustic signal calculation is performed as per the ray-path theory with a numerical model taking into account depth-wise variations of sound velocity and seabed parameters. Main results. It was shown that depending on the vertical distribution of sound speed, the source depth and distance, the acoustic wave propagation direction can change over significant range of angles the in vertical plane. In this regard it is advisable to calculate the real target force of an object of complex geometry not only from heading angle in horizontal plane but also in terms of the possible range of angles in the vertical plane. Conclusion. Model-analyzed angles range of long-range wave propagation may be used for change estimation of object target force characteristics. Practical significance of the study lies in improving the methods of calculation of the real target force of complex shape objects in terms of state-of the art capabilities of simulating the propagation of acoustic signals conditions in the ocean.