z-logo
open-access-imgOpen Access
Computer-based model of asynchronous electric propulsion drive with three stator windings
Author(s) -
Igor Kalinin
Publication year - 2021
Publication title -
trudy krylovskogo gosudarstvennogo naučnogo centra
Language(s) - English
Resource type - Journals
eISSN - 2618-8244
pISSN - 2542-2324
DOI - 10.24937/2542-2324-2021-1-395-132-140
Subject(s) - propulsion , stator , electrically powered spacecraft propulsion , electromagnetic coil , asynchronous communication , induction motor , synchronous motor , electric motor , engineering , computer science , control theory (sociology) , voltage , electrical engineering , automotive engineering , aerospace engineering , telecommunications , control (management) , artificial intelligence
Object and purpose of research. This paper discusses electric propulsion system of leader icebreaker. Its purpose was to develop mathematical and computer-based model of electric propulsion drive powered by asynchronous motor with three stator windings for further investigation of steady, transitional, asymmetric and emergency operation scenarios of electric power and propulsion system for the leader icebreaker. Materials and methods. Hardware and methods for computer-based simulation of complex engineering structures. Main results. Development of the mathematical model representing asynchronous motor with three windings in phase coordinates. Computational studies on direct startup of 15 MW propulsion motor, as well as on steady and transitional operational conditions of ship electric power system consisting of 36 MW synchronous genset, two-winding transformers and electric propulsion drive with 15 MW asynchronous motor in phase coordinates with three stator windings and three-level frequency converter. Calculation of voltage non-sinusoidality ratio for MSB buses with operation of 15 MW propulsion motor driven by 36 MW synchronous genset. Conclusion. Mathematical model of asynchronous motor suggested in this paper could be used to calculate steady and transitional operation scenarios of marine power systems with frequency-controlled three-winding asynchronous motor, as well as to calculate electromechanical and electromagnetic processes and refine frequency control algorithms. This is especially relevant because each of the asynchronous electric machines used in the electromechanical assemblies of leader icebreaker propulsion motors has three stator windings, and this icebreaker is the first experience of applying a 15 MW marine electric drive.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here