
U-Pb zircon age of a sheeted dike complex in ophiolites in the structure of the Revdinsky massif, Ural Рlatinum Belt
Author(s) -
С. В. Берзин,
V. S. Chervyakovsky
Publication year - 2021
Publication title -
litosfera
Language(s) - English
Resource type - Journals
eISSN - 2500-302X
pISSN - 1681-9004
DOI - 10.24930/1681-9004-2021-21-6-849-866
Subject(s) - dike , geology , zircon , ophiolite , massif , geochemistry , gabbro , metamorphism , diorite , petrology , paleontology , igneous rock , tectonics
Research subject. A tectonic block of ophiolites, corresponding to the root zone of a sheeted dike complex, in the eastern part of the Revdinsky massif of the Platinum-bearing belt of the Urals (UPB). Materials and methods. Zircons for dating were collected in the first-generation dolerite dikes of the sheeted dike complex under study, which had been previously considered as Ordovician. U-Pb dating of zircons was performed by LA-ICP-MS on a NexION 300S quadrupole mass spectrometer with a laser ablation attachment NWR 213. Results. Zircons with an age of 425.6 ± 2.9 Ma are characterized by primary magmatic zoning and apparently correspond to the time of intrusion of the sheeted dike complex. In zircons with an age of 404.0 ± 2.9 Ma, inclusions of metamorphogenic minerals (amphibole, chamosite, quartz, clinozoisite) were discovered. This age reflects rock recrystallization or metamorphism, for example, during the intrusion of later vein rocks of the diorite-tonalite series or dolerite dikes of the second generation. Three points of determination showed a younger age of 362 ± 5.6 Ma, probably reflecting the time of metamorphism at the beginning of collisional processes. Conclusions. For the first time, the Silurian U-Pb age of zircons (LA-ICP-MS) was obtained for the ophiolite block (root zone of the sheeted dike complex) in the structure of the Revdinsky massif UPB. The obtained age of intrusion of the sheeted dike complex (425.6 ± 2.9 Ma) coincides with the age of zircons (428.5 ± 3.7 Ma) from gabbro screens in sheeted dikes of the East Ural zone determined earlier (Smirnov, Ivanov, 2010) and corresponds to the time of spreading over the subduction zone in the Middle Urals.