
İncirin Sıcak Hava ve Mikrodalga Destekli Köpük Kurutma Yöntemi ile Kurutulması
Author(s) -
Mehmet Koç,
Feyza Elmas,
Emine Varhan
Publication year - 2019
Publication title -
türk tarım - gıda bilim ve teknoloji dergisi
Language(s) - English
Resource type - Journals
ISSN - 2148-127X
DOI - 10.24925/turjaf.v7i2.291-300.2272
Subject(s) - physics , chemistry
In this study, the drying process of fig foam was carried out with hot air (60, 70, 80°C) and microwave (100, 300, 600 W) and the effect of drying process parameters and foam thickness on drying kinetics was investigated. The drying process was carried out only falling drying rate period and no constant drying rate period was observed. The drying times of the microwave drying were lower than the drying times of hot air drying due to the volumetric heating in addition to the large evaporation area on the foam surfaces. Drying times were shortened by increasing the temperature and microwave power whereas drying time increased with increasing foam thickness. Experimental drying data were placed in semi-empirical models of the 2. Fick's diffusion equation to determine kinetic parameters. Among them, it was found that Wang and Singh and Logarithmic models were better fitted for microwave and hot air drying respectively. The effective diffusion coefficient values for microwave and hot air drying varied between 9.94×10-10-405.69×10-10, 13.26×10-10-26.65×10-10 m2·s-1, respectively. Effective diffusion coefficient values increased with increasing temperature, microwave power and foam thickness. High thickness supported the diffusion process by convection of heat due to the increase in gaps in the structure. Activation energy which calculated with Arrhenius equation was varied from 2.195-2.379 W·g-1 for microwave drying and 12.952-21.426 kJ·mol-1 for hot air drying.