z-logo
open-access-imgOpen Access
Histopathological Diagnosis System for Gastritis Using Deep Learning Algorithm
Author(s) -
Wei Ba,
Shuhao Wang,
Can-Cheng Liu,
Yuefeng Wang,
Huaiyin Shi,
Zhigang Song
Publication year - 2021
Publication title -
chinese medical sciences journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.215
H-Index - 21
ISSN - 1001-9294
DOI - 10.24920/003962
Subject(s) - medicine , gastritis , diagnostic accuracy , receiver operating characteristic , chronic gastritis , atrophic gastritis , algorithm , test set , artificial intelligence , pathological , biopsy , gastroenterology , computer science , stomach
Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images (WSIs). Methods We retrospectively collected 1,250 gastric biopsy specimens (1,128 gastritis, 122 normal mucosa) from PLA General Hospital. The deep learning algorithm based on DeepLab v3 (ResNet-50) architecture was trained and validated using 1,008 WSIs and 100 WSIs, respectively. The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs, with the pathologists' consensus diagnosis as the gold standard. Results The receiver operating characteristic (ROC) curves were generated for chronic superficial gastritis (CSuG), chronic active gastritis (CAcG), and chronic atrophic gastritis (CAtG) in the test set, respectively.The areas under the ROC curves (AUCs) of the algorithm for CSuG, CAcG, and CAtG were 0.882, 0.905 and 0.910, respectively. The sensitivity and specificity of the deep learning algorithm for the classification of CSuG, CAcG, and CAtG were 0.790 and 1.000 (accuracy 0.880), 0.985 and 0.829 (accuracy 0.901), 0.952 and 0.992 (accuracy 0.986), respectively. The overall predicted accuracy for three different types of gastritis was 0.867. By flagging the suspicious regions identified by the algorithm in WSI, a more transparent and interpretable diagnosis can be generated. Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs. By pre-highlighting the different gastritis regions, it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom