Open Access
ANALISIS KOMPONEN UTAMA MENGGUNAKAN METODE EIGENFACE TERHADAP PENGENALAN CITRA WAJAH
Author(s) -
Nunu Kustian
Publication year - 2017
Publication title -
jurnal teknologi/jurnal teknologi
Language(s) - English
Resource type - Journals
eISSN - 2460-0288
pISSN - 2085-1669
DOI - 10.24853/jurtek.9.1.43-48
Subject(s) - computer science , humanities , art
Proses pengenalan wajah yang dilakukan oleh komputer tidak semudah dan secepat dibandingkan dengan proses pengenalan yang dilakukan oleh manusia. Manusia dengan mudah dapat mengenali wajah seseorang dengan sangat cepat tanpa rasanya harus berfikir. Input yang diperlukan pada aplikasi ini adalah berupa citra wajah dengan ukuran dan resolusi yang sama. Output aplikasi ini adalah berupa class terdekat dari wajah yang ingin dikenali. Aplikasi ini dibuat menggunakan MATLAB yang cukup handal dan mudah dalam perhitungan matematik dan bekerja dalam konsep matrik serta mempunyai fungsi visualisasi yang bervariasi. Salah satu metode pendekatan yang digunakan adalah Eigenface, sebuah metode yang dikemukakan oleh Turk dan Pentland. Metode ini melibatkan sebuah set wajah yang pada dasarnya melibatkan proses analisis komponen utama (Principal Component Analysis). Dalam metode ini citra wajah akan diproyeksikan dalam sebuah ruang fitur yang menonjolkan variasi yang signifikan di antara citra wajah yang diketahui. Fitur signifikan inilah yang disebut dengan Eigenface karena fitur-fitur tersebut adalah komponen utama dari suatu set citra wajah untuk pelatihan. Hal yang perlu diingat adalah fitur-fitur ini tidak berarti berhubungan dengan fitur-fitur yang terdapat pada wajah, seperti mata, hidung, mulut, dan telinga. Eigenface hanya akan menangkap point-point pada citra yang menyebabkan variasi yang signifikan antara wajah-wajah dalam database yang membuat mereka dapat dibedakan.