z-logo
open-access-imgOpen Access
Oscillation Tests for Fractional Difference Equations
Author(s) -
George E. Chatzarakis,
Palaniyappan Gokulraj,
T Kalaimani
Publication year - 2018
Publication title -
tatra mountains mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.171
H-Index - 12
eISSN - 1338-9750
pISSN - 1210-3195
DOI - 10.2478/tmmp-2018-0005
Subject(s) - physics , analytical chemistry (journal) , chemistry , chromatography
In this paper, we study the oscillatory behavior of solutions of the fractional difference equation of the form Δ ( r ( t ) g ( Δ α x ( t ) ) ) + p ( t ) f ( ∑ s = t 0 t − 1 + α ( t − s − 1 ) ( − α ) x ( s ) ) = 0 , t ∈ t 0 + 1 − α , $$\Delta \left( {r\left( t \right)g\left( {{\Delta ^\alpha }x(t)} \right)} \right) + p(t)f\left( {\sum\limits_{s = {t_0}}^{t - 1 + \alpha } {{{(t - s - 1)}^{( - \alpha )}}x(s)} } \right) = 0, & t \in {_{{t_0} + 1 - \alpha }},$$ where Δ α denotes the Riemann-Liouville fractional difference operator of order α , 0 < α ≤ 1, ℕ t 0 +1−α ={ t 0 +1−α t 0 +2−α…}, t 0 > 0 and γ > 0 is a quotient of odd positive integers. We establish some oscillatory criteria for the above equation, using the Riccati transformation and Hardy type inequalities. Examples are provided to illustrate the theoretical results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here