
Influence of L-threonine on the growth, structural, optical, mechanical and nonlinear optical properties of tartaric acid single crystal
Author(s) -
G. Thilakavathi,
R. Arun Kumar,
Gunasekaran Venugopal
Publication year - 2018
Publication title -
materials science poland
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 32
eISSN - 2083-1331
pISSN - 2083-134X
DOI - 10.2478/msp-2018-0094
Subject(s) - materials science , tartaric acid , second harmonic generation , evaporation , crystal (programming language) , crystallography , crystal growth , indentation hardness , analytical chemistry (journal) , single crystal , optics , chemistry , microstructure , organic chemistry , composite material , laser , physics , computer science , citric acid , thermodynamics , programming language
Single crystals of pure and L-threonine added tartaric acid (LT/TA), organic nonlinear optical (NLO) materials were grown from their respective aqueous solution by slow evaporation method. The crystalline nature of the grown crystals was confirmed by powder X-ray diffraction analysis (XRD). UV-Vis-NIR absorption and transmission spectra revealed that the lower cut-off wavelength was around 281 nm and the crystals exhibited high transmission over visible and near IR region. The presence of the functional groups such as O–H, C–H, C–O, C=O in the grown crystals was confirmed by FT-IR analysis. CHN analysis was carried out to confirm the presence of L-threonine in the grown crystals. Microhardness study on the crystals revealed that the hardness number H v increased with the applied load. The growth pattern of the crystals were analyzed through etching analysis from which the etch patterns in the shape of ‘step-triangle’ were observed. The second harmonic generation (SHG) properties of pure and L-threonine doped tartaric acid crystals were confirmed by Kurtz-Perry powder technique.