
Generalized functional inequalities in Banach spaces
Author(s) -
Hajira Dimou,
Youssef Aribou,
Samir Kabbaj
Publication year - 2021
Publication title -
moroccan journal of pure and applied analysis
Language(s) - English
Resource type - Journals
ISSN - 2351-8227
DOI - 10.2478/mjpaa-2021-0022
Subject(s) - physics
In this paper, we solve and investigate the generalized additive functional inequalities ‖ F ( ∑ i = 1 n x i ) - ∑ i = 1 n F ( x i ) ‖ ≤ ‖ F ( 1 n ∑ i = 1 n x i ) - 1 n ∑ i = 1 n F ( x i ) ‖ \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| and ‖ F ( 1 n ∑ i = 1 n x i ) - 1 n ∑ i = 1 n F ( x i ) ‖ ≤ ‖ F ( ∑ i = 1 n x i ) - ∑ i = 1 n F ( x i ) ‖ . \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.