
Effects of Chemical Reaction on Transient MHD Flow with Mass Transfer Past an Impulsively Fixed Infinite Vertical Plate in the Presence of Thermal Radiation
Author(s) -
B. Prabhakar Reddy
Publication year - 2019
Publication title -
international journal of applied mechanics and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.189
H-Index - 8
eISSN - 2353-9003
pISSN - 1734-4492
DOI - 10.2478/ijame-2019-0056
Subject(s) - schmidt number , mass transfer , dimensionless quantity , mechanics , magnetohydrodynamics , thermal radiation , heat transfer , sherwood number , materials science , thermodynamics , physics , magnetic field , nusselt number , turbulence , reynolds number , prandtl number , quantum mechanics
The effects of chemical reaction on a transient MHD mixed convection flow with mass transfer past an impulsively fixed infinite vertical plate under the influence of a transverse magnetic field have been presented. The medium is considered to be non-scattering and the fluid to be non-gray having emitting-absorbing and optically thick radiation limit properties. The dimensionless governing equations of the flow and mass transfer with boundary conditions are solved numerically by using the Ritz finite element method. The numerical results for the velocity, temperature and the concentration profiles as well as the skin-friction coefficient for different values of physical parameters such as the radiation parameter, magnetic parameter, Schmidt number and chemical reaction parameter have been obtained and presented through graphs and tables. It has been found that there is a fall in the temperature and velocity for both air and water as the radiation parameter is increased. An increase in the Schmidt number and chemical reaction parameter results a decrease in the concentration and velocity profiles for both air and water. Furthermore, an increase in the radiation parameter, magnetic parameter, Schmidt number and chemical reaction parameter decreases the skin-friction.