
Microstructural Characterization of ULC Steel
Author(s) -
Cao-Son Nguyen,
Hoang D. Le,
Anh-Hoa Bui
Publication year - 2020
Publication title -
advances in materials science/advances in materials sciences
Language(s) - English
Resource type - Journals
eISSN - 2083-4799
pISSN - 1730-2439
DOI - 10.2478/adms-2020-0004
Subject(s) - materials science , electron backscatter diffraction , equiaxed crystals , microstructure , metallurgy , ferrite (magnet) , diffraction , scanning electron microscope , annealing (glass) , optical microscope , composite material , optics , physics
In the present study, microstructure of the ULC steel was investigated by using the X-ray diffraction (XRD), optical microscopy (OM) and electron back scattering diffraction (EBSD) analysis. The pure ferrite phase consisting of various crystalline orientations, e.g. (110) and (200) etc., existed in the ULC steel. Ultra-fine grains of ferrite were observed in the ND-TD cross-section (⊥ RD), meanwhile, typical lamina were seen in the ND-RD cross-section (// RD) of the steel sheet. Grain size of the annealed steel was observed to be coarser and equiaxed in all direction. According the EBSD results, intensities of the beneficial texture {111} increased in the annealed steel, but weakened in the cross-section that was parallel to rolling direction. Ratio of low-angle grain boundaries (1°< LAGBs < 15°) in the annealed steel was estimated as the higher value (93.1 %) than that in the cold-rolled steel (69.1 %).