
Some Structural Resuits on Prime Graphs
Author(s) -
Ibtesam Ali Rasheed Alrowily
Publication year - 2019
Publication title -
journal of advances in mathematics
Language(s) - English
Resource type - Journals
ISSN - 2347-1921
DOI - 10.24297/jam.v17i0.8519
Subject(s) - mathematics , combinatorics , indecomposable module , vertex (graph theory) , graph , discrete mathematics
Given a graph G = (V,E), a subset M of V is a module [17] (or an interval [10] or an autonomous [11] or a clan [8] or a homogeneous set [7] ) of G provided that x ∼ M for each vertex x outside M. So V,φ and {x}, where x ∈ V , are modules of G, called trivial modules. The graph G is indecomposable [16] if all the modules of G are trivial. Otherwise we say that G is decomposable . The prime graph G is an indecomposable graph with at least four vertices. Let G and H be two graphs. Let If G has no induced subgraph isomorphic to H, then we say that G is H-free. In this paper, we will prove the next theorem