z-logo
open-access-imgOpen Access
A NOVEL APPLICATION OF CHAOTIC PROPERTIES IN WATER TREATMENT PLANT
Author(s) -
Sridhar Natarajan,
S. Senthil Kumaar
Publication year - 2016
Publication title -
journal of advances in chemistry
Language(s) - English
Resource type - Journals
ISSN - 2321-807X
DOI - 10.24297/jac.v12i14.479
Subject(s) - chaotic , computer science , water quality , process engineering , process (computing) , environmental science , control theory (sociology) , control (management) , artificial intelligence , engineering , ecology , biology , operating system
This paper aims at presenting a new optimization proposal to enhance the flocculation process in Water Treatment (WT) plant using a better flash mixing, located at KELAVERAPALLY, in Krishnagiri district, Tamil Nadu, India. Further, Sludge removal is done efficiently which decreases the water wastage as well as improvement in output water quality. Though WT plants are already equipped with systematic and sequential physicochemical processes, still they need to be optimized to obtain a better treated drinking water to maintain the quality standards as prescribed by World Health Organization. Chaotic behavior in chemical systems has been used to optimize the performance of WT plant. Measurement systems implemented in WT plant yield several chaotic based measurement parameters which are used to control the system operations to maintain the target water quality.  This intelligible data extraction through the proposed measurement  systems in a short span of time improves the plant performance without adding any costly systems except few changes in the existing plant setup.  Chaotic behavior is ensured through Lyapunov Exponents and Kolmogorov-Sinai Entropies. Both, water quality improvement and water wastage reduction is achieved simultaneously in the proposed work when a dosage prediction is done using Feed Forward Neural Networks. The treatment plant investigated has a maximum capacity of 14 MLD (Million litres per day) using two parallel streams with 7 MLD each

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here