
小鼠卵母细胞中母源基因 Ooep 可能参与同源重组介导的DNA双链损伤修复过程
Author(s) -
Dajian He,
Lin Wang,
Zhi-Bi Zhang,
Kun Guo,
Jingzheng Li,
Xiaorong He,
Qinghua Cui,
Ping Zheng
Publication year - 2018
Publication title -
zoological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.933
H-Index - 19
ISSN - 2095-8137
DOI - 10.24272/j.issn.2095-8137.2018.067
Subject(s) - rad51 , biology , dna repair , microbiology and biotechnology , oocyte , genome instability , homologous recombination , dna damage , dna , meiosis , gene , genetics , embryo
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase(RAD51)focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.