
Experimental and Analytical Study on Pull-out Force of Steel Fiber-Reinforced Concrete Blocks
Author(s) -
Taha K. Mohammedali
Publication year - 2022
Publication title -
mağallaẗ diyālá li-l-ʿulūm al-handasiyyaẗ/mağallaẗ diyālá li-l-ʻulūm al-handasiyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2616-6909
pISSN - 1999-8716
DOI - 10.24237/djes.2022.15103
Subject(s) - materials science , steel bar , cracking , structural engineering , fiber reinforced concrete , bar (unit) , composite material , finite element method , fiber , shear (geology) , reinforced concrete , engineering , geology , oceanography
Reinforcing bar bonding in concrete is essential for reinforcing bar anchoring and reinforced concrete cracking control. A pull out test of a reinforcing bar embedded in a concrete block is commonly used to determine it. When compared to plain concrete, steel fiber enhanced the mechanical properties of reinforced concrete. This paper presents experimental and analytical study on pull-out force of steel fiber-reinforced concrete blocks. Experimental program consists of six specimens. Two parameters are considered in this study, which are steel bar diameter and content of steel fiber. The numerical analysis was conducted by the finite element ANSYS software and was carried out on the experimental specimens. An analytical analysis was conducted to investigate the developing of the shear stress in surrounding concrete in XZ-plan and stresses in steel bar. Test results show that the steel fibers had significant influence on the increase of the pull-out force. The pull-out force increased by 3%, 4% and 15%, for CS1, CS2 and CS3 compared with specimens without steel fiber C1, C2, and C3 respectively.