z-logo
open-access-imgOpen Access
Shear behavior of reinforced concrete wide beams strengthened with CFRP sheet without stirrups
Author(s) -
Ali L. Abass
Publication year - 2019
Publication title -
mağallaẗ diyālá li-l-ʿulūm al-handasiyyaẗ/mağallaẗ diyālá li-l-ʻulūm al-handasiyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2616-6909
pISSN - 1999-8716
DOI - 10.24237/djes.2019.12110
Subject(s) - materials science , reinforcement , structural engineering , shear (geology) , beam (structure) , reinforced concrete , formwork , deflection (physics) , composite material , failure mode and effects analysis , engineering , physics , optics
Reinforced concrete wide beams (WBS) have been used in construction buildings because its provide many advantages; reducing the reinforcement congestion, reducing the quantity of the required formwork, providing simplicity for replication, and decreasing the storey height. The current study presents the results of four full-scale wide RC beams in order to study their shear behavior and investigate the effectiveness of carbon fiber reinforced polymer (CFRP) when using as shear reinforcement to improve the shear capacity of wide RC beams, one these beams was fabricated by (ANSYS) program this beam was unstrengthened with CFRP and without stirrups (control beam), the other two beams was strengthened with vertical and inclined CFRP sheet without stirrups and the last beam reinforced with shear stirrups (WBS). All beams casted with normal concrete strength (30 MPa), simply supported and under two point loads. The performances of these beams were measured in terms of; ultimate load, crack patterns, concrete and steel strains, deflection, and mode of failure. The results showed an increasing in ultimate load of strengthened beams with inclined, vertical CFRP and beam with shear reinforcement by (19.9%), (7.14%) and (39.8%) respectively as compared with the control beam, and this results means possibility of replacing the internal shear reinforcement with externally bonded CFRP.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here