
Modern directions for the development of hydrogen energy technologies
Author(s) -
А. А. Филимонова,
А. А. Чичиров,
Н. Д. Чичирова,
А. Г. Филимонов,
В. В. Куличихин
Publication year - 2019
Publication title -
nadežnostʹ i bezopasnostʹ ènergetiki
Language(s) - English
Resource type - Journals
eISSN - 2542-2057
pISSN - 1999-5555
DOI - 10.24223/1999-5555-2019-12-2-89-96
Subject(s) - energy carrier , hydrogen technologies , renewable energy , hydrogen economy , fossil fuel , environmental science , commercialization , energy development , electricity generation , energy storage , energy engineering , hydrogen fuel , environmentally friendly , primary energy , business , waste management , engineering , power (physics) , fuel cells , ecology , physics , marketing , quantum mechanics , chemical engineering , electrical engineering , biology
Hydrogen energy combines a set of technologies for the production, transportation, storage and use of a versatile secondary energy carrier — hydrogen. The energy use of hydrogen is formed from the possibilities of environmentfriendly generation of electricity and long-term storage without loss, including on a large scale. Questions related to the consumption of hydrogen as a promising environment-friendly and versatile energy carrier and energy storage in various sectors of the national economy were formulated in the early 70s of the last century after the first oil fuel crisis. It has become obvious that it is necessary to develop new, ecologically optimal energy technologies based on the use of renewable energy sources, nuclear energy, coal and versatile environment-friendly energy carriers, making it possible to replace non-renewable energy resources as these are depleted and become more expensive. Hydrogen as a secondary energy carrier reveals its potential in a global strategy for sustainable energy development in the 21st century, which confronts the challenges of irreversible climate change, unsustainable oil production and increasing environmental pollution. Hydrogen can play a key role in mainline transportation by road and rail, in coastal and international shipping, in air transport, as well as in long-term and seasonal storage of electricity in networks, relying mainly on local renewable energy sources and local raw materials. The decisive element in the commercialization of hydrogen fuel technologies in Russia at the current stage is the formation of cost-effective hydrogen-transport-energy complexes, in particular, within power generating facilities.