z-logo
open-access-imgOpen Access
Automated Chronic Kidney Disease Detection Model with Knearest Neighbor
Author(s) -
Tsehay Admassu Assegie
Publication year - 2021
Publication title -
international journal of computer and information technology
Language(s) - English
Resource type - Journals
ISSN - 2279-0764
DOI - 10.24203/ijcit.v10i3.110
Subject(s) - kidney disease , nephrology , computer science , identification (biology) , disease , data mining , acute kidney injury , machine learning , artificial intelligence , medicine , biology , botany
Chronic kidney disease is one of the most common disease in the world today. Kidney disease causes death if the patient is not threated at early stage. One of the challenge in kidney disease treatment is accurate identification of kidney disease at an early stage. Moreover, detecting kidney disease requires experienced nephrologist. However, in developing nations lack of medical specialist or nephrologist for identifying chronic kidney disease makes the problem more challenging. As alternative solution to kidney disease identification, researchers have developed many intelligent models using K-nearest Neighbors (KNN) algorithm. However, the accuracy of the existing KNN model has scope for improvement. Thus, this study proposed KNN based model for accurate identification of kidney disease at early stage. To develop optimized KNN model, we have employed error plot to find most favorable K value to obtain more accurate result than the existing models. To conduct experiments, study employed kidney disease dataset collected form publically available Kaggle data repository for training and testing the proposed model. Finally, we have evaluated the proposed model against predictive accuracy. The experimental result on the proposed model appears to prove that the predictive accuracy of the model is 99.86%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here