A note on the Diophantine Equation x^2-kxy+ky^2+ly=0
Author(s) -
Sakha A. Alkabouss,
Boualem Bensebaa,
Nacira Berbara,
Simon Earp-Lynch,
Florian Luca
Publication year - 2021
Publication title -
mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.294
H-Index - 6
eISSN - 2601-744X
pISSN - 1222-9016
DOI - 10.24193/mathcluj.2021.2.01
Subject(s) - diophantine equation , mathematics , legendre's equation , characterization (materials science) , diophantine set , pure mathematics , discrete mathematics , physics , optics
We investigate the Diophantine equation x^2 −kxy + ky^2 + ly = 0 for integers k and l with k even. We give a characterization of the positive solutions of this equation in terms of k and l. We also consider the same equation for other values of k and l.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom