
Synthesis of Four-arms Star-shaped PCL-b-PEG as a Potential Amphiphilic Hydrogel
Author(s) -
Mohamad Wafiuddin Ismail,
Wan Khartini Wan Abdul Khodir,
Shafida Abd Hamid,
Rusli Daik
Publication year - 2021
Publication title -
scientific research journal/scientific research journal
Language(s) - English
Resource type - Journals
eISSN - 2289-649X
pISSN - 1675-7009
DOI - 10.24191/srj.v18i1.11515
Subject(s) - dispersity , gel permeation chromatography , polycaprolactone , polymer chemistry , amphiphile , polyethylene glycol , polymer , peg ratio , copolymer , chemical engineering , materials science , solubility , polymerization , chemistry , organic chemistry , finance , economics , engineering
Hydrogel formulations have drawbacks in delivering hydrophobic drugs which can affect its efficiency. Introducing amphiphilic system into hydrogel can overcome this limitation and increase hydrogel effectiveness as a drug cargo. In this study, four arms star-shaped block copolymers with polyethylene glycol (PEG) as hydrophilic block and polycaprolactone (PCL) as hydrophobic block were synthesized via a combination of ring-opening polymerization (ROP) and Steglich esterification. The structures were confirmed by 1H-NMR and FTIR analysis. The polydispersity index (PDI) indices from gas permeation chromatography (GPC) were 1.3 to 1.6 suggesting controlled polymerisation reaction occurred. Average molecular weight analysis, Mn based on 1H-NMR are close to the theoretical value. However, there is a slight difference of Mn between GPC and proton analysis due to the ability of GPC determining Mn for the star-shaped polymer. Both star-shaped polymers possesses high thermal stability (>350 °C) based on thermal decomposition study using TGA analysis. The presence of PEG had increased the hydrophilicity and solubility of the PCL in the hydrogel since an opaque homogeneous formulation form when using the amphiphilic star-shaped polymer. The pH (7.25 ± 0.03) and viscosity (9330 cP) of the formulation are set within the compatibility and suitable for human skin and topical application.