z-logo
open-access-imgOpen Access
Критичний випадок в теорії матричних диференціальних рівнянь
Author(s) -
С. А. Щоголев,
В. В. Карапетров
Publication year - 2021
Publication title -
naukovij vìsnik užgorodsʹkogo unìversitetu. serìâ matematika ì ìnformatika
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2708-9568
pISSN - 2616-7700
DOI - 10.24144/2616-7700.2021.39(2).100-115
Subject(s) - physics
При математичному описанні різноманітних явищ і процесів, що виникають в математичній фізиці, електротехніці, економіці, доводиться мати справу з матричними диференціальними рівняннями. Тому такі рівняння є актуальними как для математиків, так і для фахівців в інших галузях природознавства. В даній статті розглядається квазілінійне матричне диференціальне рівняння з коефіцієнтами, зображуваними у вигляді абсолютно та рівномірно збіжних рядів Фур'є з повільно змінними в певному сенсі коефіцієнтами та частотою (клас F). Різниці діагональних елементів матриць лінійної частини є суто уявними, тобто ми маємо справу з критичним випадком. Але між цими діагональними елементами припускаються певні співвідношення, що вказують на відсутність резонансу між власними частотами системи і частотою зовнішньої збуджуючої сили. Розглядається задача встановлення ознак існування у такого рівняння розв'язків класу F. За допомогою низки перетворень рівняння зводиться до рівняння некритичного випадку, і розв'язок класу F цього рівняння шукається методом послідовних наближень за допомогою принципа стискуючих відображень. Потім на підставі властивостей розв'язків перетвореного рівняння робляться висновки щодо властивостей початкового рівняння.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here