z-logo
open-access-imgOpen Access
Про оцiнку ймовiрностi перевищення лiнiї зваженою сумою субгауссових випадкових процесi
Author(s) -
Р. Є. Ямненко,
Н. В. Юрченко
Publication year - 2020
Publication title -
naukovij vìsnik užgorodsʹkogo unìversitetu. serìâ matematika ì ìnformatika
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2708-9568
pISSN - 2616-7700
DOI - 10.24144/2616-7700.2020.2(37).122-129
Subject(s) - physics , combinatorics , crystallography , mathematics , chemistry
Субгауссові випадкові величини мажоруються за розподілом центрованими  гауссовими  випадковими величинами, а тому є їхнім природним узагальненням. У цій роботі розглядається задача оцінювання ймовірності перевищенням рівня, що заданий деякою прямою $ct$,$\ c>0$, траєкторіями зваженої суми субгауссових випадкових процесів $X_i$, $i=\overline{1,n}$, визначених на компактній множині $B$, із певними ваговими функціями $w_i(t)$. А саме, будуються оцінки зверху імовірностей вигляду $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{sup}}_{t\mathrm{\in }B} \left(\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right)\ }\mathrm{>}x\right\}$, $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{inf}}_{t\mathrm{\in }B} \left(\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right)\ }\mathrm{ }x\right\}$. Така задача має безпосереднє застосування в \linebreak теорії черг при оцінюванні ймовірності переповнення буфера $x>0$ скінченного розміру у системі з одиничним сервером і лінійною інтенсивністю обслуговування, а також у страховій математиці при оцінюванні ймовірності банкрутства відповідного процесу ризику. Використовуючи метод метричної ентропії, узагальнено і покращено попередні результати, отримані автором у роботі [4] для більш загального класу $\Phi$-субгауссових випадкових процесів. Як приклад, отриману оцінку застосовано до усередненої суми субгауссових вінерівських випадкових процесів -- випадкових процесів, що мають таку саму коваріаційну функцію, як і (гауссівський) вінерівський процес, але із субгауссовими траєкторіями.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here