
Про оцiнку ймовiрностi перевищення лiнiї зваженою сумою субгауссових випадкових процесi
Author(s) -
Р. Є. Ямненко,
Н. В. Юрченко
Publication year - 2020
Publication title -
naukovij vìsnik užgorodsʹkogo unìversitetu. serìâ matematika ì ìnformatika
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2708-9568
pISSN - 2616-7700
DOI - 10.24144/2616-7700.2020.2(37).122-129
Subject(s) - physics , combinatorics , crystallography , mathematics , chemistry
Субгауссові випадкові величини мажоруються за розподілом центрованими гауссовими випадковими величинами, а тому є їхнім природним узагальненням. У цій роботі розглядається задача оцінювання ймовірності перевищенням рівня, що заданий деякою прямою $ct$,$\ c>0$, траєкторіями зваженої суми субгауссових випадкових процесів $X_i$, $i=\overline{1,n}$, визначених на компактній множині $B$, із певними ваговими функціями $w_i(t)$. А саме, будуються оцінки зверху імовірностей вигляду $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{sup}}_{t\mathrm{\in }B} \left(\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right)\ }\mathrm{>}x\right\}$, $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{inf}}_{t\mathrm{\in }B} \left(\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right)\ }\mathrm{ }x\right\}$. Така задача має безпосереднє застосування в \linebreak теорії черг при оцінюванні ймовірності переповнення буфера $x>0$ скінченного розміру у системі з одиничним сервером і лінійною інтенсивністю обслуговування, а також у страховій математиці при оцінюванні ймовірності банкрутства відповідного процесу ризику. Використовуючи метод метричної ентропії, узагальнено і покращено попередні результати, отримані автором у роботі [4] для більш загального класу $\Phi$-субгауссових випадкових процесів. Як приклад, отриману оцінку застосовано до усередненої суми субгауссових вінерівських випадкових процесів -- випадкових процесів, що мають таку саму коваріаційну функцію, як і (гауссівський) вінерівський процес, але із субгауссовими траєкторіями.