z-logo
open-access-imgOpen Access
Developing function diagram of digital-analogue control system of ship electric drive
Author(s) -
Alexander Sergeevich Bordyug
Publication year - 2022
Publication title -
vestnik astrahanskogo gosudarstvennogo tehničeskogo universiteta. seriâ: morskaâ tehnika i tehnologiâ
Language(s) - English
Resource type - Journals
eISSN - 2225-0352
pISSN - 2073-1574
DOI - 10.24143/2073-1574-2022-1-85-89
Subject(s) - analog signal , signal (programming language) , voltage , computer science , rotation (mathematics) , electrical engineering , control theory (sociology) , digital signal processing , engineering , control (management) , artificial intelligence , programming language
The article considers the direct digital control based on microprocessor technology, which has both the undoubted advantages in implementation and some difficulties, for example, work in real time. When developing the control system, two main problems were taken into account: a compromise in choosing possible equipment and signal processing devices. A function diagram of a digital-analogue control system for a ship electric drive is proposed, with can help to increase the reliability of an electric drive with a variable speed. When an electric drive is monitored and regulated, the current, voltage, drive rotation frequency, and the drive shaft rotation angle are under control. In addition, a functional diagram of an electric drive with frequency control has been developed, in which the signal is converted into analog form using a digital-to-analog converter. The application of a two-phase sinusoidal signal generator and a voltage shaper are proposed for obtaining sinusoidal signals of high stability both in phase displacement and in amplitude, which is important from the point of view of the energy characteristics of the electric drive. Further, the signal is converted to the analog form using a digital-to-analog converter and is used as a reference voltage that generates sinusoidal signals. After choosing the element base it can be concluded that the read-only memory device programming is carried out for each engine separately, in contrast to the rest circuit blocks, which are universal, which creates difficulties for creating a universal control system for a ship electric drive. There has been found the possibility of implementing the control system of the electric drive with frequency current control by using the rational distribution of functions between the microprocessor and digital and analog devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here