z-logo
open-access-imgOpen Access
Improvement of power efficiency and environmental safety of ship boilers
Author(s) -
В. А. Стенин,
Irina Ershova
Publication year - 2020
Publication title -
vestnik astrahanskogo gosudarstvennogo tehničeskogo universiteta. seriâ: morskaâ tehnika i tehnologiâ
Language(s) - English
Resource type - Journals
eISSN - 2225-0352
pISSN - 2073-1574
DOI - 10.24143/2073-1574-2020-3-40-46
Subject(s) - flue gas , boiler (water heating) , combustion , flue gas emissions from fossil fuel combustion , waste management , nitrogen oxide , environmental science , thermal power station , staged combustion , nox , chemistry , engineering , combustion chamber , homogeneous charge compression ignition , organic chemistry
The article focuses on the methods of reducing nitrogen oxide emissions that are important to consider and apply in operation of ship boilers and thermal power plants, along with other activities aimed to protect the environment. Nitrogen oxide emissions can be restrained by using the technological (primary, in-process) operations. Flue gas recirculation is the most popular method of restraining nitrogen oxide emissions in oil-gas boilers, reducing the temperature and nitrogen oxide concentration in flue gases. Besides affecting the environment, the combustion products recirculation greatly lowers the technical and economic performance of the boiler by decreasing its performance that is why using the method remains limited. There has been described the scheme of flue gas recirculation in the ship auxiliary boilers that ensures reduction of nitrogen oxide emissions and increase in efficiency of boiler furnace. It has been proposed to combine steam and carbon dioxide fuel conversion with power combustion and thermochemical heat regeneration. Thermodynamic feasibility of combustion product recirculation in ship auxiliary boiler has been given. Using the power and stoichiometric analyses of reference liquid fuel combustion, the possibility of fuel conversion has been illustrated for the case when both fuel and recirculation gases are supplied into reburning zone of the furnace. The calculations determine air oxygen ratio for reburning and oxidative zones, flue gas recirculation factor and furnace efficiency change at thermochemical heat regeneration. The study results are proposed to use in non-stoichiometric and staged fuel combustion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here