Open Access
Obtaining electromagnetic compatibility of marine equipment under electrostatic discharges
Author(s) -
A.A. Worshevsky,
E. S. Grishakov
Publication year - 2020
Publication title -
vestnik astrahanskogo gosudarstvennogo tehničeskogo universiteta. seriâ: morskaâ tehnika i tehnologiâ
Language(s) - English
Resource type - Journals
eISSN - 2225-0352
pISSN - 2073-1574
DOI - 10.24143/2073-1574-2020-1-106-114
Subject(s) - electromagnetic compatibility , electrostatic discharge , electromagnetic interference , hull , electrical engineering , voltage , engineering , ground , compatibility (geochemistry) , automotive engineering , marine engineering , reliability engineering , chemical engineering
The paper describes the problem of electromagnetic compatibility for electrostatic discharge (ESD), which is most actual for ships where all systems are highly automated and susceptible to ESD digital technology. The results of electromagnetic compatibility tests of ship systems after their installation on the vessel allow to conclude that it is not enough to fulfill only the existing ESD immunity requirements of the Russian Maritime register of shipping which are currently confirmed by ESD tests in the laboratory. ESD methods and reasons have been analyzed. The possible accumulated potentials and parameters of currents, voltages and field strengths during discharge are presented. The existing ESD immunity standards are being considered. The scheme of the developed and certified generator of electrostatic discharges ESD – 25000 is presented. The most frequent defects under the influence of ESD are given. There have been formulated the equivalent schemes of the electric equipment housing at different lengths of grounding of the housing and the methods of connecting the cover with the housing. The results of measurements of electric field and magnetic field parameters are presented. The results of modeling and experiments are compared. The developed sensors, methods of their calibration and obtained technical characteristics are being tested. There are given the parameters and forms of ESD voltage and current, experimental data of ESD secondary effects in the EE hull and adjacent equipment, results of discharges in the ship's cable, interference in the supply network through secondary power sources. The most effective design and ESD protection methods have been analyzed