
MULTIDIMENSIONAL REPRESENTATION OF AUTOMATIC DOSING DEVICE SIGNALS
Author(s) -
Д. Б. Федосенков,
А. А. Симикова,
Б. А. Федосенков,
С. М. Кулаков
Publication year - 2018
Publication title -
vestnik astrahanskogo gosudarstvennogo tehničeskogo universiteta. seriâ: upravlenie, vyčislitelʹnaâ tehnika i informatika
Language(s) - English
Resource type - Journals
eISSN - 2224-9761
pISSN - 2072-9502
DOI - 10.24143/2072-9502-2018-4-26-32
Subject(s) - instantaneous phase , wigner distribution function , signal (programming language) , fourier transform , frequency domain , mathematics , discrete time signal , hilbert transform , time–frequency analysis , analytic signal , wavelet , multidimensional signal processing , signal processing , mathematical analysis , computer science , analog signal , digital signal processing , artificial intelligence , statistics , physics , spectral density , signal transfer function , telecommunications , radar , quantum mechanics , quantum , programming language , computer hardware
The article describes the development of a special approach based on using multidimensional wavelet distributions principle to monitor and control the feed dozing processes in the mix preparation unit. As a key component, this approach uses the multidimensional time-frequency Wigner-Ville distribution, which is the part of Cohen's class distributions. The research focuses on signals characterizing mass transfer processes in the form of material flow measuring signals in relevant points of the unit. Wigner-Ville distribution has been shown in time terms as Fourier transform of products of multiplied parts of the signal under consideration for past and future time moments; corresponding distribution for the frequency spectrum is shown as Fourier transform of the products of signal parts for high-frequency and low-frequency fragments of the signal spectrum. It has been noted that when using a complex model of a dozing signal, discrete values (samples) of the latter are considered as its real values. The description of the signal parameters (amplitude, phase, frequency) has been carried out with the help of Hilbert transform. In Cohen's class distributions which represent one-dimensional non-stationary flow signals, the concept of ‘instantaneous frequency’ has been introduced. A graphical explanation for the transformation of a process flow signal from a one-dimensional time domain to a time-frequency 2 D/ 3 D -space is presented. The technology of developing a multidimensional image in the form of Wigner distribution for one-dimensional signals of continuous spiral or screw-type feeders has been examined in detail. There have been considered the features to support Wigner distribution, which allow to guess the presence or absence of time-frequency distribution elements in the interval of signal recording. There has been demonstrated how Wigner distribution can be obtained for a continuous-intermittent feeding signal. It has been concluded that for a certain types of the signal for zero fragments of the latter, non-zero time-frequency elements (i.e. virtual, anomalous ones) appear on the distribution. In addition to Wigner distribution, two other distributions - of Rihachek and Page - are considered. They display the same signal and also contain virtual elements, but in different domains of the time-frequency space. A generalized multidimensional compound signal distribution with a so-called distribution kernel available in it is presented, which includes a correction parameter that allows controlling the intensity of the virtual signal energy.