
A Review on Deep Image Contrast Enhancement
Author(s) -
Puspad Kumar Sharma,
Nitesh Gupta,
Anurag Shrivastava
Publication year - 2020
Publication title -
smart moves journal ijoscience
Language(s) - English
Resource type - Journals
ISSN - 2582-4600
DOI - 10.24113/ijoscience.v6i1.258
Subject(s) - artificial intelligence , computer science , computer vision , image quality , image enhancement , image processing , deep learning , image restoration , image (mathematics) , feature detection (computer vision) , brightness , digital image processing , contrast (vision) , preprocessor , noise (video) , physics , optics
In image processing applications, one of the main preprocessing phases is image enhancement that is used to produce high quality image or enhanced image than the original input image. These enhanced images can be used in many applications such as remote sensing applications, geo-satellite images, etc. The quality of an image is affected due to several conditions such as by poor illumination, atmospheric condition, wrong lens aperture setting of the camera, noise, etc [2]. So, such degraded/low exposure images are needed to be enhanced by increasing the brightness as well as its contrast and this can be possible by the method of image enhancement. In this research work different image enhancement techniques are discussed and reviewed with their results. The aim of this study is to determine the application of deep learning approaches that have been used for image enhancement. Deep learning is a machine learning approach which is currently revolutionizing a number of disciplines including image processing and computer vision. This paper will attempt to apply deep learning to image filtering, specifically low-light image enhancement. The review given in this paper is quite efficient for future researchers to overcome problems that helps in designing efficient algorithm which enhances quality of the image.