Wind Turbine Multi-Fault Detection based on SCADA Data via an AutoEncoder
Author(s) -
Alberto Ávila,
Christian Tutivén,
Bryan Puruncajas,
Yolanda Vidal
Publication year - 2021
Publication title -
renewable energy and power quality journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 22
ISSN - 2172-038X
DOI - 10.24084/repqj19.325
Subject(s) - turbine , scada , fault detection and isolation , reliability engineering , fault (geology) , wind power , benchmark (surveying) , autoencoder , reliability (semiconductor) , computer science , pipeline (software) , real time computing , offshore wind power , engineering , actuator , power (physics) , artificial intelligence , deep learning , mechanical engineering , physics , electrical engineering , geodesy , quantum mechanics , seismology , geography , programming language , geology
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom