z-logo
open-access-imgOpen Access
Perancangan Sistem Pendukung Keputusan Penentuan Impor Bawang Merah
Author(s) -
Wiwi Widayani,
Kusrini Kusrini,
Hanif Al Fatta
Publication year - 2015
Publication title -
citec (creative information technology) journal/citec journal
Language(s) - English
Resource type - Journals
eISSN - 2460-4259
pISSN - 2354-5771
DOI - 10.24076/citec.2015v2i3.47
Subject(s) - physics , statistics , mathematics
Pertambahan jumlah penduduk Indonesia serta meningkatkannya permintaan industri akan bawang merah yang tidak diimbangi dengan jumlah produksi mendorong pemerintah membuka impor bawang merah. Impor dilakukan untuk menjaga keseimbangan harga dan pasokan bawang merah sehingga inflasi yang diakibatkan kenaikan harga bawang merah dapat ditekan, namun impor yang tidak tepat jumlah akan mengakibatkan kerugian bagi pihak petani, perlu adanya sistem pendukung dalam menentukan volume impor guna menjaga keseimbangan harga pasar dan pemenuhan kebutuhan bawang merah. Sistem pendukung keputusan yang dirancang menerapkan Fuzzy Inference System (FIS) Tsukamoto. Sistem yang dirancang memungkinkan pengguna untuk melakukan training data dan testing data, proses dalam training data yaitu : 1)Clustering data latih, menggunakan algoritma K-Means 2)Ekstraksi Aturan, 3)Testing data latih, hitung nilai impor dengan fuzzy Tsukamoto, 4)Menganalisa error hasil fuzzy menggunakan MAPE(Means Absolute Percentage Error), 5)Testing Data Uji dan menganalisa hasil error data uji. Hasil Uji Model menunjukan penentuan impor bawang merah dengan parameter input harga petani, harga konsumen, produksi, konsumsi, harga impor dan kurs terhadap 60 data latih menghasilkan error terendah sebesar 0.07 pada 12 cluster, hasil uji mesin inferensi terhadap data uji menghasilkan error sebesar 0.25. Indonesian population growth and increase industrial demand shallot is not matched with number of production prompted the government to opened shallot imports. Import done to maintain the balance price and supply of shallot so inflation caused by rising prices of onion can be suppressed, but not the exact amount of imports would result in losses for the farmers, support system in determining volume imports is need to maintain balance of market price and needs of shallot. Decision support system designed to apply Fuzzy Inference System (FIS) Tsukamoto. The system is allows the user to perform the training data and testing data, the training process performs are: 1) Clustering training data, using the K-Means algorithm 2) Extraction Rule, 3) Testing data, calculate imports value by fuzzy Tsukamoto, 4) analyze the results error using MAPE (Means Absolute Percentage error), 5) testing test data and analyze the results error. The results show the determination of imported shallot with input parameters producer prices, consumer prices, production, consumption, import prices and the exchange rate against 60 training data produces the lowest error of 0:07 in 12 clusters, the inference engine test resulted in an error of 0.25.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here