Open Access
Land Use/Land Cover Change With Impact On Land Surface Temperature: A Case Study Of Mkda Planning Area, West Bengal, India
Author(s) -
Samrin Fatema,
Abhisek Chakrabarty
Publication year - 2020
Publication title -
geography, environment, sustainability
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.316
H-Index - 8
eISSN - 2542-1565
pISSN - 2071-9388
DOI - 10.24057/2071-9388-2020-62
Subject(s) - environmental science , land cover , land use , urban heat island , urban climate , climate change , remote sensing , urbanization , air temperature , physical geography , geography , hydrology (agriculture) , meteorology , geology , oceanography , civil engineering , economic growth , engineering , economics , geotechnical engineering
The type of surface influences the temperature of a surface. If it is made of concrete or another hard material, the temperature will be higher. Hence it is essential to study the land surface temperature (LST) of urban areas. The LST is an important parameter in the estimation of radiation budgets and heat balance and is a controlling factor of dynamic climate changes. In this work, we made an effort to identify the LST of the Midnapore Kharagpur Development Authority planning region. Multi-temporal images acquired by Landsat 7 ETM+, Landsat 5 TM and Landsat 8 using OLI sensors on 3 May 2001, 7 May 2011 and 29 May 2019, respectively, were corrected for radiometric and geometric errors and processed to extract LULC classes and LST. Thermal remote sensing can be used to monitor the temperature and local climate of urban areas. This study has shown that the temperature varies across the surface according to land use. It was found that the urbanized area increased from 6.79% (40.39 sq. km) to 11.6% (69.2 sq. km) between 2001 and 2011 and from 11.6% (69.2 sq. km) to 17.22 % (102.79 sq. km) between 2011 and 2019. The LST study has shown that there has been a tremendous change in the spatial pattern of the temperature between 2001 and 2019. Whereas in 2001 the highest temperature did not exceed 34°C, by 2019 it had increased by nearly 8°C, reaching 41.29°C. So, the findings of this study are significant.