z-logo
open-access-imgOpen Access
Perbandingan Algoritma Backpropagation Dan Learning Vector Quantization (LVQ) dalam Pengenalan Pola Bangun Ruang Geometri
Author(s) -
Yeka Hendriyani
Publication year - 2020
Publication title -
invotek
Language(s) - Uncategorized
Resource type - Journals
eISSN - 2549-9815
pISSN - 1411-3414
DOI - 10.24036/invotek.v20i2.746
Subject(s) - learning vector quantization , backpropagation , artificial intelligence , computer science , pattern recognition (psychology) , vector quantization , mathematics , speech recognition , artificial neural network
Penelitian ini bertujuan untuk memberikan rekomendasi dari hasil perbandingan antara metode jaringan syaraf tiruan menggunakan metode backpropagation dan learning vector quantization (LVQ) dalam melakukan pengenalan pola. Kedua metode ini sering digunakan untuk aplikasi pengenalan pola, karena kedua metode ini mampu mengelompokkan pola-pola ke dalam kelas-kelas pola dan termasuk kedalam metode pembelajaran terawasi (supervised learning). Dalam penelitian ini akan dibuktikan metode backpropagation dan LVQ mampu mengenali pola bentuk geometri bangun datar serta menunjukkan metode mana yang lebih baik dalam melakukan pengenalan pola. Implementasi metode backpropagation dan learning vector quantization (LVQ) menggunakan toolbox Matlab v8.5. Hal pertama yang dilakukan adalah melakukan proses pengolahan citra yaitu proses grayscalling dan thresholding untuk mendapatkan nilai binerisasi yang akan digunakan sebagai nilai input pada JST. Setelah itu nilai input akan diproses pada metode JST backpropagation dan learning vector quantization. Dari hasil implementasi pengujian kedua metode tersebut didapatkan bahwa algoritma backpropagation lebih baik dari learning vector quantization dalam pengenalan pola bangun datar geometri.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here