z-logo
open-access-imgOpen Access
Geoelectric heterogeneities of the Kerch iron ore basin
Author(s) -
I.Yu. Nikolaev,
T. K. Burakhovych,
А. Kushnir,
Ye. M. Sheremet
Publication year - 2021
Publication title -
geofizičeskij žurnal/geofizičeskij žurnal
Language(s) - English
Resource type - Journals
eISSN - 2524-1052
pISSN - 0203-3100
DOI - 10.24028/gzh.v43i5.244078
Subject(s) - geology , crust , peninsula , structural basin , sedimentary rock , depth sounding , geochemistry , geomorphology , geography , archaeology , oceanography
The three-dimensional geoelectric model of the Earth’s crust and upper mantle of the Kerch Peninsula has been built for the first time based on the results of experimental observations of the Earth’s low-frequency electromagnetic field, carried out in 2007—2013 by the Institutes of the National Academy of Sciences of Ukraine. Its physical and geological interpretation and detailing of the near-surface part were carried out according to the data of the audiomagnetotelluric sounding method to study the deep structure of the Kerch iron ore basin. To the east of the Korsak-Feodosiya fault along the southern part of the Indolo-Kuban trough (in the north of the South Kerch and almost under the entire North Kerch zones), a low-resistance anomaly (ρ=1 Ohm∙m) was found at depths from 2.5 km to 12 km about 20 km wide. Its eastern part is located in the consolidated Earth’s crust and is galvanically connected with surface sedimentary strata, while the western part is completely in sedimentary deposits. The anomaly covers the territory of the Kerch iron ore basin and occurrences of mud volcanism. The characteristics of the upper part of the layered section of the Kerch Peninsula in the interval of the first hundreds of meters were obtained from the results of one-dimensional inversion of the audiomagnetotelluric sounding data (frequency range 8—4000 Hz). It is shown that the first 15 m of the section, corresponding to Quaternary deposits, have resistivity values up to 1 Ohm∙m. Below, in the Neogene sediments, the electrical resistance increases to values of 5 Ohm∙m and more. Both horizontally and vertically, the distribution of resistivity values has a variable character, manifesting as a thin-layered structure with low resistivity values. Possibly, such areas have a direct connection with the channel for transporting hummock material and gases. A connection is assumed between the low-resistivity thin-layered near-surface areas, a deep anomaly of electrical conductivity in the upper part of the Earth’s crust, and the likely high electrical conductivity of rocks at the depths of the upper mantle with iron ore deposits, as well as the manifestation of mud volcanism. The heterogeneity of the crustal and mantle highly conductive layers may indicate a high permeability of the contact zones for deep fluids.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here