
A Model Approach to Analytically Identify Stuck Pipe and Its Mechanism in Wellbore
Author(s) -
Boniface A. Oriji,
Iribhogbe Silas Aire
Publication year - 2020
Publication title -
european journal of engineering research and science
Language(s) - English
Resource type - Journals
ISSN - 2506-8016
DOI - 10.24018/ejers.2020.5.3.1845
Subject(s) - node (physics) , identifier , computer science , interface (matter) , torque , flow chart , simulation , engineering , engineering drawing , operating system , structural engineering , computer network , physics , bubble , maximum bubble pressure method , thermodynamics
Stuck pipe incidents translate to non-productive time. There is a need to mitigate stuck pipe incidents which can be achieved by conforming to recommended practices. Also, quick diagnosis is necessary in order to free a stuck pipe. Trial-and-error method can further complicate the situation. This work aims at diagnosing stuck pipe mechanisms and recommend practices to free a stuck pipe. spANALYZE also estimates the axial force and torque needed to free a stuck pipe caused by differential sticking. spANALYZE is a thick desktop client application developed in C# using the Microsoft Visual Studio 2019 development environment. It is an object-oriented .NET application that utilizes the Windows Presentation Foundation (WPF) architecture for its user interface. Each of the analyzers within spANALYZE were implemented generically as a list of nodes, representing the concept of a flow chart. New analyzers can easily be added simply by programmatically defining each node in the flow chart. Each node has a node identifier, a node type, node text, and the node identifiers of each answer – yes, no and restricted. spANALYZE presents the following benefits: quick and early detection of stuck pipe mechanisms, propose recommended action steps to free pipe, calculate stuck pipe depth, compute the torque and axial force needed to free a stuck string.