z-logo
open-access-imgOpen Access
Comparative Evaluation of Probability Distribution Models of Flood flow in Lower Niger Basin
Author(s) -
Itolima Ologhadien
Publication year - 2021
Publication title -
european journal of engineering and technology research
Language(s) - English
Resource type - Journals
ISSN - 2736-576X
DOI - 10.24018/ejeng.2021.6.2.2352
Subject(s) - gumbel distribution , quantile , statistics , flood myth , generalized extreme value distribution , probability distribution , return period , mathematics , log normal distribution , mean squared error , extreme value theory , hydrology (agriculture) , environmental science , geography , geology , archaeology , geotechnical engineering
The choice of optimum probability distribution model that would accurately simulate flood discharges at a particular location or region has remained a challenging problem to water resources engineers. In practice, several probability distributions are evaluated, and the optimum distribution is then used to establish the quantile - probability relationship for planning, design and management of water resources systems, risk assessment in flood plains and flood insurance. This paper presents the evaluation of five probability distributions models: Gumbel (EV1), 2-parameter lognormal (LN2), log pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value (GEV) using the method of moments (MoM) for parameter estimation and annual maximum series of five hydrological stations in the lower Niger River Basin in Nigeria. The choice of optimum probability distribution model was made on five statistical goodness – of – fit measures; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR), and probability plot correlation coefficient (PPCC). The results show that GEV is the optimum distribution in 3 stations, and LP3 in 2 stations. On the overall GEV is the best – fit distribution, seconded by PR3 and thirdly, LP3. Furthermore, GEV simulated discharges were in closest agreement with the observed flood discharges. It is recommended that GEV, PR3 and LP3 should be considered in the final selection of optimum probability distribution model in Nigeria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here