z-logo
open-access-imgOpen Access
Features of the Electrochemical Deposition of Films from a Triple System of CoNiFe
Author(s) -
R. D. Tikhonov
Publication year - 2021
Publication title -
european journal of engineering and technology research
Language(s) - English
Resource type - Journals
ISSN - 2736-576X
DOI - 10.24018/ejeng.2021.6.2.2081
Subject(s) - electrolyte , electrochemistry , deposition (geology) , chloride , materials science , analytical chemistry (journal) , inorganic chemistry , chemistry , electrode , metallurgy , chromatography , paleontology , sediment , biology
The nature of phenomena that occurs in the electrolyte during the electrochemical deposition of CoNiFe films and the mechanism leading to the difference in the relative content of elements in the electrolyte and film was clarified. This clarification was obtained with the help of a spectrophotometric study of chloride electrolytes and the electrochemical deposition of CoNiFe films at 70 °C. An experimental study of the absorption spectra and the pH values of the FeCl2, NiCl2 and CoCl2 salt solutions at concentrations of 0.005 to 1 mol/l showed the complex nature of the ion-formation balance in single-component and mixed solutions and the dependence of ion formation on acidic and alkaline additives. The deposited CoNiFe film was made from a chloride electrolyte with a component content ratio of 1:1:1 at both high (0.5 mol/l) and low (0.006 mol\l) concentrations of each component. The content of each component in the film after the electrochemical deposition of the three component solution (FeCl2, CoCl2, and NiCl2 at equal concentrations) did not correspond to the composition of the electrolyte. The mechanism for the abnormal deposition of Co, Fe, Ni occurred due to the incomplete ionization of atoms and the differences in the mobility of ions. The magnetic susceptibility of the films formed in the triple CoNiFe system was higher than that of a permalloy. Therefore, the triple system shows promise for use in magnetic field converters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here