
Use Hierarchical Codebook to Improve the Primary User Detection in the Cognitive Radio’s Cooperative Spectrum Sensing
Author(s) -
Hoai Trung Tran
Publication year - 2021
Publication title -
european journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
ISSN - 2736-5751
DOI - 10.24018/ejece.2021.5.6.372
Subject(s) - codebook , cognitive radio , computer science , fusion center , channel (broadcasting) , mimo , beamforming , transmission (telecommunications) , probabilistic logic , algorithm , channel state information , computer network , telecommunications , wireless , artificial intelligence
Currently, the cognitive network is receiving much attention due to the advantages it brings to users. An important method in cognitive radio networks is spectrum sensing, as it allows secondary users (SUs) to detect the existence of a primary user (PU). Information of probability of false detection or warning about the PU is sent to a fusion center (FC) by the SUs, from which the FC will decide whether or not to allow the SUs to use the PU spectrum to obtain information. The transmission of information with a high signal to noise ratio (SNR) will increase the FC's ability to detect the existence of the PU. However, researchers are currently focusing on probabilistic formulas assuming that the channel is known ideally or there is nominal channel information at the FC; moreover, one model where the FC only knows the channel correlation matrix. Furthermore, studies are still assuming this is a simple multiple input – multiple output (MIMO) channel model but do not pay much attention to the signal processing at the transmitting and receiving antennas between the SUs and the FCs. A new method introduced in this paper when combining beamforming and hierarchical codebook makes the ability to detect the existence of the PU at the FC significantly increased compared to traditional methods.