
Higher Rate Secret Key Formation (HRKF) based on Physical Layer for Securing Vehicle-to-Vehicle Communication
Author(s) -
Inka Trisna Dewi,
Amang Sudarsono,
Prima Kristalina,
Mike Yuliana
Publication year - 2020
Publication title -
emitter international journal of engineering technology
Language(s) - English
Resource type - Journals
eISSN - 2443-1168
pISSN - 2355-391X
DOI - 10.24003/emitter.v8i1.493
Subject(s) - computer science , key generation , randomness , key (lock) , physical layer , cryptography , wireless , cryptanalysis , key distribution , nist , pre shared key , secure communication , bit error rate , computer network , channel (broadcasting) , algorithm , public key cryptography , computer security , mathematics , encryption , telecommunications , statistics , speech recognition
One effort to secure vehicle-to-vehicle (V2V) communication is to use a symmetrical cryptographic scheme that requires the distribution of shared secret keys. To reduce attacks on key distribution, physical layer-based key formation schemes that utilize the characteristics of wireless channels have been implemented. However, existing schemes still produce a low bit formation rate (BFR) even though they can reach a low bit error rate (BER). Note that V2V communication requires a scheme with high BFR in order to fulfill its main goal of improving road safety. In this research, we propose a higher rate secret key formation (HRKF) scheme using received signal strength (RSS) as a source of random information. The focus of this research is to produce keys with high BFR without compromising BER. To reduce bit mismatch, we propose a polynomial regression method that can increase channel reciprocity. We also propose a fixed threshold quantization (FTQ) method to maintain the number of bits so that the BFR increases. The test results show that the HRKF scheme can increase BFR from 40% up to 100% compared to existing research schemes. To ensure the key cannot be guessed by the attacker, the HRKF scheme succeeds in producing a key that meets the randomness of the NIST test.