
Sorption capacity of phosphate in mineral soils: I Estimation of sorption capacity by means of sorption isotherms
Author(s) -
R. Niskanen
Publication year - 1990
Publication title -
agricultural and food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 35
eISSN - 1795-1895
pISSN - 1459-6067
DOI - 10.23986/afsci.72918
Subject(s) - sorption , soil water , chemistry , phosphate , environmental chemistry , ionic strength , langmuir , oxalate , adsorption , inorganic chemistry , soil science , geology , aqueous solution , organic chemistry
The sorption capacity of phosphate in seven soil samples (clay content 1—70 %, organic carbon content 0.8—10.7 %, soil pH 4.2—5.3, oxalate-extractable Al 11—222 and Fe 11—202 mmol/kg soil) was studied by means of sorption isotherms. The soils were equilibrated, for two to seven days at +5 and +20°C, with solutions containing phosphate 0—10 mmol/l (0—200 mmol/kg soil) at a constant ionic strength of 0.01 . Prolongation of the reaction time increased the sorption of phosphate only partially. The rise in temperature, from +5 to +20°C, increased the sorption from higher phosphate concentrations. At +20°C, the sorption curves of three soils showed a sorption maximum of 4, 19 and 34 mmol/kg soil. The sorption data of six soils was in accordance with the Langmuir equation; the sorption maximum ranged from 15 to 119 mmol/kg soil, and were of the same magnitude as the maximums determined experimentally.