z-logo
open-access-imgOpen Access
Monitoring and support optimization analysis of surrounding rock pressure and initial supporting stress in deep-buried soft rock tunnel
Author(s) -
Q. Liu,
R. Li,
Weijun Tian,
Y. Wang,
X. Li
Publication year - 2021
Publication title -
revista internacional de métodos numéricos para cálculo y diseño en ingeniería
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.213
H-Index - 9
eISSN - 1886-158X
pISSN - 0213-1315
DOI - 10.23967/j.rimni.2021.01.003
Subject(s) - arch , geotechnical engineering , deformation (meteorology) , excavation , geology , stress (linguistics) , overburden pressure , rock mass classification , mining engineering , structural engineering , engineering , linguistics , oceanography , philosophy
Attempting at the problems of surrounding rock pressure and initial supporting stress of deep-buried soft rock tunnel, a soft rock highway tunnel project in Northwest China was monitored on-site for surrounding rock deformation, surrounding rock pressure, initial stress and other items.Discuss the deformation laws and stress characteristics of surrounding rock and steel arch at different construction stages, and compare and analyze the deformation control effect of surrounding rock with different initial lining thickness, different initial elastic modulus and different anchor length through numerical simulation.The results show that the excavation stage of the upper step is a stage where the pressure and deformation of the surrounding rock increase rapidly. The steel arch support is mainly compressed, and the average stress can reach more than 50% of the peak value within 5 days. The stress is mostly higher than the measuring point of the lower step. The initial steel frame support of the upper step and the middle step bears a greater load. The excavation of the upper middle step should be "passed quickly and supported in time", and the construction should adopt The “letting first,then resisting” method appropriately increases the reserved deformation of the surrounding rock to relieve the support stress of the primary steel frame. When the deformation of the surrounding rock and the growth rate of the surrounding rock pressure slow down, the secondary lining can be applied in advance. The research results can provide reference and reference for the design and construction of similar tunnel projects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here