z-logo
open-access-imgOpen Access
Influence of wave effect on fiber stress limit under tensile tests of composite material
Author(s) -
I. R. Antypas,
Amer Karnoub,
A. G. Dyachenkо
Publication year - 2020
Publication title -
vestnik donskogo gosudarstvennogo tehničeskogo universiteta
Language(s) - English
Resource type - Journals
eISSN - 1992-6006
pISSN - 1992-5980
DOI - 10.23947/1992-5980-2019-19-4-310-316
Subject(s) - materials science , composite material , ultimate tensile strength , isotropy , kevlar , composite number , tensile testing , aramid , shear (geology) , perpendicular , fiber , optics , physics , geometry , mathematics
. The response of composite materials to the impact of a certain kind of load is difficult to predict, therefore, research in this area has often been neglected. The work objective was to study the influence of the wave effect on the tensile strength of polymer composites of a fibrous structure. Materials and Methods . In the tests, samples of multilayer materials of various thicknesses with continuous, long and short fibers that form a fabric, as well as a layered structure, were used. The number of layers corresponds to the resistance to the applied loads. Fibers of glass, carbon, kevlar, or their combinations were used. Isotropic materials – epoxide, polyester and vinyl ether – were used as binders. Research Results. The tensile test results of homogeneous samples and samples of fibrous structure are obtained. In this case, the values of fiber angle varied. The stability of their intercomparison test results is established. The dependence of the maximum tensile stresses σmax, MPa, (on the vertical axis) on the fiber angle θmax is obtained. These stresses for a fibreless material amounted to 250 MPa. Normal and tangential stresses acting perpendicular to the fibers, as well as shear stresses of the layered material, are calculated. As follows from the analysis of the dependences for the significant tensile stresses and from the study on refraction in the section of the sample damage, it was established that the shear stress τ was the cause of the fracture. Using an equation providing the compensation for the angle of inclination θ = 45, it was determined that the shear stress of the polyester is τху = 35 MPa. This was the stress that caused subsequently the destruction of the samples. Discussion and Conclusions . The tensile stresses of the composite material decrease with increasing the fiber angle in certain areas. The destruction of all fiber samples occurred when the shear stress reached a value approximately equal to the shear stress at which the destruction of samples made only from a binder material happened. When the specimen broke, the fracture mode had the form similar to the shear failure; besides, at the moment of fracture, the object having a rectangular shape, being deformed at an angle, took the form of a parallelogram.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here